For elastic wave scattering problems in unbounded anisotropic media, the existence of backward waves makes classic truncation techniques fail completely. This paper is concerned with an exact truncation technique for terminating backward elastic waves. We derive a closed form of elastrodynamic Green's tensor based on the method of Fourier transform and design two fundamental principles to ensure its physical correctness. We present a rigorous theory to completely classify the propagation behavior of Green's tensor, thus proving a conjecture posed by B\'ecache, Fauqueux and Joly (J. Comp. Phys., 188, 2003) regarding a necessary and suffcient condition of the non-existence of backward waves. Using Green's tensor, we propose a new radiation condition to characterize anistropic scattered waves at infinity. This leads to an exact transparent boundary condition (TBC) to truncate the unbounded domain, regardless the existence of backward waves or not. We develop a fast algorithm to evaluate Green's tensor and a high-accuracy scheme to discretize the TBC. A number of experiments are carried out to validate the correctness and efficiency of the new TBC.
翻译:针对非有限边界各向异性介质中的弹性波散射问题,反向波的存在使得经典的截断技术完全失败。本文关注终止反向弹性波的精确截断技术。我们基于傅里叶变换方法推导了弹性动力学格林函数的闭式表达式,并设计了两个基本原则以确保其物理正确性。我们提出了一个严密的理论来完全分类格林函数的传播行为,从而证明了Bécache、Fauqueux和Joly (J. Comp. Phys.,188,2003) 提出的关于不存在反向波的必要和充分条件的猜想。利用格林函数,我们提出了一种新的边界辐射条件来表征无限距离处的各向异性散射波。这导致了一个精确的透明边界条件( TBC ),无论是否存在反向波都可以截断无限域。我们开发了一种快速算法来评估格林函数和一种高精度方案来离散化 TBC 。进行了许多试验来验证新的 TBC 的正确性和效率。