Neural sequence-to-sequence TTS has achieved significantly better output quality than statistical speech synthesis using HMMs. However, neural TTS is generally not probabilistic and the use of non-monotonic attention both increases training time and introduces "babbling" failure modes that are unacceptable in production. This paper demonstrates that the old and new paradigms can be combined to obtain the advantages of both worlds, by replacing the attention in Tacotron 2 with an autoregressive left-right no-skip hidden Markov model defined by a neural network. This leads to an HMM-based neural TTS model with monotonic alignment, trained to maximise the full sequence likelihood without approximations. We discuss how to combine innovations from both classical and contemporary TTS for best results. The final system is smaller and simpler than Tacotron 2, and learns to speak with fewer iterations and less data, whilst achieving the same naturalness prior to the post-net. Unlike Tacotron 2, our system also allows easy control over speaking rate. Audio examples and code are available at https://shivammehta007.github.io/Neural-HMM/


翻译:神经序列到序列 TTS 与使用 HMMs 的统计语言合成相比,取得了显著更好的产出质量。 但是,神经 TTS 通常不是概率性的,使用非分子关注,既增加了培训时间,又引入了生产中无法接受的“泡泡”失败模式。 本文表明,旧的和新的范式可以通过将Tacotron 2 的注意力与两个世界的优势结合起来,用神经网络定义的自动回归左右右无skip隐藏的 Markov 模型来取代Tacotron 2 的注意力。 这导致一个基于 HMM 的神经 TTS 模型, 以单声调为主, 受过培训, 使全序列的可能性最大化, 而不近似。 我们讨论如何将传统 TTS 和当代 TTS 的创新结合起来, 以取得最佳效果。 最后的系统比 Tacotron 2 更小, 更简单, 并学习如何在后联网之前实现同样的自然性。 与 Tacotron 2 不同, 我们的系统也便于控制发言率。 在 http://shimmet/ hural / hural 中可以找到音示例示例示例和代码。

0
下载
关闭预览

相关内容

语音合成(Speech Synthesis),也称为文语转换(Text-to-Speech, TTS,它是将任意的输入文本转换成自然流畅的语音输出。语音合成涉及到人工智能、心理学、声学、语言学、数字信号处理、计算机科学等多个学科技术,是信息处理领域中的一项前沿技术。 随着计算机技术的不断提高,语音合成技术从早期的共振峰合成,逐步发展为波形拼接合成和统计参数语音合成,再发展到混合语音合成;合成语音的质量、自然度已经得到明显提高,基本能满足一些特定场合的应用需求。目前,语音合成技术在银行、医院等的信息播报系统、汽车导航系统、自动应答呼叫中心等都有广泛应用,取得了巨大的经济效益。 另外,随着智能手机、MP3、PDA 等与我们生活密切相关的媒介的大量涌现,语音合成的应用也在逐渐向娱乐、语音教学、康复治疗等领域深入。可以说语音合成正在影响着人们生活的方方面面。
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Yann LeCun都推荐的深度学习资料合集!
InfoQ
14+阅读 · 2019年7月7日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Attention is All You Need | 每周一起读
PaperWeekly
10+阅读 · 2017年6月28日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
Arxiv
3+阅读 · 2018年11月13日
Arxiv
5+阅读 · 2018年5月28日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关资讯
Yann LeCun都推荐的深度学习资料合集!
InfoQ
14+阅读 · 2019年7月7日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Attention is All You Need | 每周一起读
PaperWeekly
10+阅读 · 2017年6月28日
Top
微信扫码咨询专知VIP会员