Motor brain-computer interface (BCI) development relies critically on neural time series decoding algorithms. Recent advances in deep learning architectures allow for automatic feature selection to approximate higher-order dependencies in data. This article presents the FingerFlex model - a convolutional encoder-decoder architecture adapted for finger movement regression on electrocorticographic (ECoG) brain data. State-of-the-art performance was achieved on a publicly available BCI competition IV dataset 4 with a correlation coefficient between true and predicted trajectories up to 0.74. The presented method provides the opportunity for developing fully-functional high-precision cortical motor brain-computer interfaces.
翻译:汽车大脑-计算机界面(BCI)的开发严重依赖神经时间序列解码算法。 深层次学习结构的最近进展使得可以自动选择特征,以接近数据中的较高顺序依赖性。 本文章介绍了FingerFlex模型——一种适应电算学(ECoG)大脑数据手指运动回归的进化编码-解码器结构。在公开提供的BCI竞争IV数据集4上,实现了最先进的性能,真实轨道和预测轨迹之间的相关系数高达0.74。 介绍的方法为开发完全功能高精密运动脑计算机界面提供了机会。