Measuring and testing dependence between complex objects is of great importance in modern statistics. Most existing work relied on the distance between random variables, which inevitably required the moment conditions to guarantee the distance is well-defined. Based on the geometry element ``angle", we develop a novel class of nonlinear dependence measures for data in metric space that can avoid such conditions. Specifically, by making use of the reproducing kernel Hilbert space equipped with Gaussian measure, we introduce kernel angle covariances that can be applied to complex objects such as random vectors or matrices. We estimate kernel angle covariances based on $U$-statistic and establish the corresponding independence tests via gamma approximation. Our kernel angle independence tests, imposing no-moment conditions on kernels, are robust with heavy-tailed random variables. We conduct comprehensive simulation studies and apply our proposed methods to a facial recognition task. Our kernel angle covariances-based tests show remarkable performances in dealing with image data.
翻译:复杂对象的内核角度相关度量
摘要:在现代统计学中,测量和测试复杂对象之间的依赖关系至关重要。大部分现有的工作依赖于随机变量之间的距离,这不可避免地需要满足距离定义的矩条件。基于几何元素“角度”,我们开发了一种新颖的非线性相关度量类,用于指标空间数据,可以避免这些条件。具体而言,通过利用配备高斯度量的再生核希尔伯特空间,我们引入了可以应用于随机向量或矩阵等复杂对象的核角协方差。我们基于$U$-统计量估计核角协方差,通过伽玛近似建立了对应的独立性检验。我们提出的基于内核角度的独立性检验不会对内核施加矩条件,对于重尾随机变量具有鲁棒性。我们进行了全面的模拟研究,并将我们提出的方法应用于面部识别任务。我们的核角协方差检验方法在处理图像数据方面表现出优异的性能。