A surge of interest has emerged in utilizing Transformers in diverse vision tasks owing to its formidable performance. However, existing approaches primarily focus on optimizing internal model architecture designs that often entail significant trial and error with high burdens. In this work, we propose a new paradigm dubbed Decision Stream Calibration that boosts the performance of general Vision Transformers. To achieve this, we shed light on the information propagation mechanism in the learning procedure by exploring the correlation between different tokens and the relevance coefficient of multiple dimensions. Upon further analysis, it was discovered that 1) the final decision is associated with tokens of foreground targets, while token features of foreground target will be transmitted into the next layer as much as possible, and the useless token features of background area will be eliminated gradually in the forward propagation. 2) Each category is solely associated with specific sparse dimensions in the tokens. Based on the discoveries mentioned above, we designed a two-stage calibration scheme, namely ViT-Calibrator, including token propagation calibration stage and dimension propagation calibration stage. Extensive experiments on commonly used datasets show that the proposed approach can achieve promising results. The source codes are given in the supplements.


翻译:近来,由于其惊人的性能,在各种视觉任务中利用Transformer引起了极大的兴趣。 然而,现有的方法主要侧重于优化内部模型架构设计,这往往需要大量的尝试和高负担。在这项工作中,我们提出了一种名为决策流校准(Decision Stream Calibration)的新范式,以提高通用视觉Transformer的性能。为了实现这一目标,我们探讨了学习过程中的信息传递机制,研究了不同令牌之间的关联性以及多个维度的相关系数。通过进一步的分析,发现:1)最终决策与前景目标的令牌相关联,而前景目标的令牌特征将尽可能传递到下一层,而背景区域的无用令牌特征将逐渐消失。2)每个类别仅与令牌中特定的稀疏维度相关联。基于上述发现,我们设计了一个两阶段校准方案,即ViT-Calibrator,包括令牌传播校准阶段和维度传播校准阶段。在常用的数据集上进行了大量实验证明了所提出方法的效果优异。该论文附带了源代码。

0
下载
关闭预览

相关内容

ICCV 2021最佳论文出炉!微软Swin Transformer摘得马尔奖
专知会员服务
29+阅读 · 2021年10月13日
专知会员服务
29+阅读 · 2021年7月30日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
20+阅读 · 2021年9月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员