We propose united implicit functions (UNIF), a part-based method for clothed human reconstruction and animation with raw scans and skeletons as the input. Previous part-based methods for human reconstruction rely on ground-truth part labels from SMPL and thus are limited to minimal-clothed humans. In contrast, our method learns to separate parts from body motions instead of part supervision, thus can be extended to clothed humans and other articulated objects. Our Partition-from-Motion is achieved by a bone-centered initialization, a bone limit loss, and a section normal loss that ensure stable part division even when the training poses are limited. We also present a minimal perimeter loss for SDF to suppress extra surfaces and part overlapping. Another core of our method is an adjacent part seaming algorithm that produces non-rigid deformations to maintain the connection between parts which significantly relieves the part-based artifacts. Under this algorithm, we further propose "Competing Parts", a method that defines blending weights by the relative position of a point to bones instead of the absolute position, avoiding the generalization problem of neural implicit functions with inverse LBS (linear blend skinning). We demonstrate the effectiveness of our method by clothed human body reconstruction and animation on the CAPE and the ClothSeq datasets.
翻译:我们提议了统一的隐含功能(UNIF ), 这是一种基于部分的方法, 供人穿衣重建, 并用原始扫描和骨架进行动画作为投入。 以前的人类重建部分方法依赖于SMPL的地面真实部分标签, 因而仅限于最起码的衣着人。 相反, 我们的方法学会了将部件与身体运动分开, 而不是部分监督, 从而可以扩展到有衣着的人和其他直线物体。 我们的分向运动是通过骨骼的初始化、 骨骼极限损失和部分正常损失实现的, 以确保稳定的部分分割, 即使培训的外观有限。 我们还提出了SDF的周边最小损失, 以压制额外的表面和部分重叠为目的。 我们的方法的另一个核心是相邻的局部断层算法, 产生非固定的畸形, 以维持部分之间的连接, 从而大大减轻了部分人工制品。 在这个算法下, 我们进一步提议了“ 相交配部分”, 一种方法, 用骨骼的相对位置来界定重量, 而不是绝对位置来界定, 避免纸质结构结构的混合问题, 。