Novel view synthesis of remote sensing scenes is of great significance for scene visualization, human-computer interaction, and various downstream applications. Despite the recent advances in computer graphics and photogrammetry technology, generating novel views is still challenging particularly for remote sensing images due to its high complexity, view sparsity and limited view-perspective variations. In this paper, we propose a novel remote sensing view synthesis method by leveraging the recent advances in implicit neural representations. Considering the overhead and far depth imaging of remote sensing images, we represent the 3D space by combining implicit multiplane images (MPI) representation and deep neural networks. The 3D scene is reconstructed under a self-supervised optimization paradigm through a differentiable multiplane renderer with multi-view input constraints. Images from any novel views thus can be freely rendered on the basis of the reconstructed model. As a by-product, the depth maps corresponding to the given viewpoint can be generated along with the rendering output. We refer to our method as Implicit Multiplane Images (ImMPI). To further improve the view synthesis under sparse-view inputs, we explore the learning-based initialization of remote sensing 3D scenes and proposed a neural network based Prior extractor to accelerate the optimization process. In addition, we propose a new dataset for remote sensing novel view synthesis with multi-view real-world google earth images. Extensive experiments demonstrate the superiority of the ImMPI over previous state-of-the-art methods in terms of reconstruction accuracy, visual fidelity, and time efficiency. Ablation experiments also suggest the effectiveness of our methodology design. Our dataset and code can be found at https://github.com/wyc-Chang/ImMPI
翻译:遥感场景的新视角合成对于现场视觉化、人机互动和各种下游应用具有重大意义。尽管计算机图形和摄影测量技术最近有所进步,但生成新观点对于遥感图像仍然具有挑战性,特别是由于其复杂性高、视觉宽广和视觉变化有限,对遥感图像而言尤为如此。在本文中,我们提出一个新的遥感视图合成方法,利用最近隐含神经显示的进展。考虑到遥感图像的高层和深度成像,我们通过结合隐含的多平面图像(MPI)和深层神经网络来代表3D空间。尽管最近计算机图形和摄影测量技术取得了进步,但3D场景在自我监督的精确优化模式下,通过具有多视图输入限制的可不同多图像多图像成型多图像成像化。因此,任何新观点的图像都可以在重建模型模型的基础上自由制作。作为副产品,可生成与特定图像相匹配的深度地图。我们称之为隐含性多平台图像(IMPI) 和深层真实性图像(IMPI) 。为进一步改进的合成合成的合成的合成,进一步改进了在视觉输入中的视图下的图像的合成,我们探索的图像中,我们探索了我们用原始图像的模型模型的模型的模型的模型的模型,我们用预测测测测测的模型的模型的模型的模型的模型,并展示了我们提出了一种新的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型。