This work uses genetic programming to explore the space of continuous optimisers, with the goal of discovering novel ways of doing optimisation. In order to keep the search space broad, the optimisers are evolved from scratch using Push, a Turing-complete, general-purpose, language. The resulting optimisers are found to be diverse, and explore their optimisation landscapes using a variety of interesting, and sometimes unusual, strategies. Significantly, when applied to problems that were not seen during training, many of the evolved optimisers generalise well, and often outperform existing optimisers. This supports the idea that novel and effective forms of optimisation can be discovered in an automated manner. This paper also shows that pools of evolved optimisers can be hybridised to further increase their generality, leading to optimisers that perform robustly over a broad variety of problem types and sizes.


翻译:这项工作利用基因编程来探索连续的选美者空间,目的是发现实现优化的新方式。 为了保持搜索空间的广度,选美者从头开始使用普什(Push)这个图灵完整、通用、通用的语言来演化。结果发现,选美者具有多样性,利用各种有趣的、有时是不寻常的战略来探索其优化景观。重要的是,许多进化的选美者在应用到培训期间未见的问题时,广泛概括,而且往往优于现有的选美者。这支持这样的观点,即新颖和有效的选美形式可以自动地发现。本文还表明,进化的选美者组合可以混合起来,进一步增加其总体性,导致选美者在广泛的问题类型和规模上表现有力。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
0+阅读 · 2021年5月12日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
0+阅读 · 2021年5月13日
Arxiv
0+阅读 · 2021年5月12日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2017年11月20日
Top
微信扫码咨询专知VIP会员