Emotion recognition using EEG signals is an emerging area of research due to its broad applicability in BCI. Emotional feelings are hard to stimulate in the lab. Emotions do not last long, yet they need enough context to be perceived and felt. However, most EEG-related emotion databases either suffer from emotionally irrelevant details (due to prolonged duration stimulus) or have minimal context doubting the feeling of any emotion using the stimulus. We tried to reduce the impact of this trade-off by designing an experiment in which participants are free to report their emotional feelings simultaneously watching the emotional stimulus. We called these reported emotional feelings "Emotional Events" in our Dataset on Emotion with Naturalistic Stimuli (DENS). We used EEG signals to classify emotional events on different combinations of Valence(V) and Arousal(A) dimensions and compared the results with benchmark datasets of DEAP and SEED. STFT is used for feature extraction and used in the classification model consisting of CNN-LSTM hybrid layers. We achieved significantly higher accuracy with our data compared to DEEP and SEED data. We conclude that having precise information about emotional feelings improves the classification accuracy compared to long-duration EEG signals which might be contaminated by mind-wandering.
翻译:使用 EEG 信号的情感识别是一个新兴的研究领域,因为其广泛适用于 BCI 。 情感感觉很难在实验室中激发。 情感不会持续很长时间,但需要有足够的背景来被感知和感受。 然而,大多数EEG 情感数据库要么存在情感上无关的细节(因为长期刺激),要么对使用刺激的情感感觉产生最低怀疑。 我们试图通过设计一个实验来减少这种权衡的影响,让参与者可以自由地在观看情感刺激的同时报告情感。 我们将这些报道的情感在我们的自然刺激情感数据集(DENS)中称为“情感事件”。 我们使用EEG信号将情感事件分类为Valence(V)和Arozal(A)的不同组合,并与DEAP和SECD的基准数据集进行比较。 StFT用于地貌提取,并在由CNN-LSTM 混合层组成的分类模型中使用。我们与DEEP 和SEECD 数据相比,我们的准确性数据更加精确。我们的结论是,关于情感感觉的精确信息会改善情感分类的准确性,因为EG 可能会被长期污染。