This paper presents a comprehensive survey of ChatGPT and GPT-4, state-of-the-art large language models (LLM) from the GPT series, and their prospective applications across diverse domains. Indeed, key innovations such as large-scale pre-training that captures knowledge across the entire world wide web, instruction fine-tuning and Reinforcement Learning from Human Feedback (RLHF) have played significant roles in enhancing LLMs' adaptability and performance. We performed an in-depth analysis of 194 relevant papers on arXiv, encompassing trend analysis, word cloud representation, and distribution analysis across various application domains. The findings reveal a significant and increasing interest in ChatGPT/GPT-4 research, predominantly centered on direct natural language processing applications, while also demonstrating considerable potential in areas ranging from education and history to mathematics, medicine, and physics. This study endeavors to furnish insights into ChatGPT's capabilities, potential implications, ethical concerns, and offer direction for future advancements in this field.
翻译:本文全面调研了ChatGPT和GPT-4,这是GPT系列中最先进的大语言模型(LLM),以及它们在各种领域中的应用前景。事实上,大规模预训练程序捕捉了整个互联网的知识,指令微调和来自人类反馈的强化学习(RLHF)等关键创新在提高LLM的适应性和性能方面发挥了重要作用。我们对arXiv上的194篇相关论文进行了深入分析,包括趋势分析,词云生成和在各种应用领域中的分布分析。研究结果显示ChatGPT/GPT-4研究受到了显着而持续的关注,主要集中在直接的自然语言处理应用领域,同时还在教育、历史、数学、医学和物理等领域展示了相当大的潜力。本研究旨在提供ChatGPT的能力和潜在影响以及未来发展方向的见解,同时探讨了与之相关的伦理问题。