生成对抗网络(GANs)已经成为图像合成的一种流行方法。其中,StyleGAN提供了一个有趣的案例研究,因为它优异的视觉质量和支持大量下游任务的能力。这份最新的报告涵盖了StyleGAN架构,以及它自诞生以来的使用方式,同时也分析了它的严重局限性。它的目的是为新人,谁希望得到一个领域的掌握,和更有经验的读者可能受益于看到当前的研究趋势和现有的工具。StyleGAN最有趣的方面是它的学习潜空间。尽管它是在没有监督的情况下学习的,但令人惊讶的是,它表现得很好,而且非常开明。结合StyleGAN的视觉质量,这些属性带来了无与伦比的编辑能力。然而,StyleGAN提供的控件天生就局限于生成器的学习分布,并且只能应用于由StyleGAN自己生成的图像。为了将StyleGAN的潜在控制应用到现实场景中,GAN反转和潜在空间嵌入的研究迅速流行起来。与此同时,这项研究也帮助我们了解了StyleGAN的内部机制和局限性。通过这些综述,我们勾勒出了StyleGAN令人印象深刻的故事,并讨论了让StyleGAN成为热门生成器的细节。我们进一步阐述了视觉先验StyleGAN结构,并讨论了它们在下游判别任务中的使用。展望未来,我们指出了StyleGAN的局限性,并对当前的趋势和未来研究的有希望的方向进行了推测,如针对任务和目标的微调。