The numerical solution of dynamical systems with memory requires the efficient evaluation of Volterra integral operators in an evolutionary manner. After appropriate discretisation, the basic problem can be represented as a matrix-vector product with a lower diagonal but densely populated matrix. For typical applications, like fractional diffusion or large scale dynamical systems with delay, the memory cost for storing the matrix approximations and complete history of the data then would become prohibitive for an accurate numerical approximation. For Volterra-integral operators of convolution type, the \emph{fast and oblivious convolution quadrature} method of Sch\"adle, Lopez-Fernandez, and Lubich allows to compute the discretized valuation with $N$ time steps in $O(N \log N)$ complexity and only requiring $O(\log N)$ active memory to store a compressed version of the complete history of the data. We will show that this algorithm can be interpreted as an $\mathcal{H}$-matrix approximation of the underlying integral operator and, consequently, a further improvement can be achieved, in principle, by resorting to $\mathcal{H}^2$-matrix compression techniques. We formulate a variant of the $\mathcal{H}^2$-matrix vector product for discretized Volterra integral operators that can be performed in an evolutionary and oblivious manner and requires only $O(N)$ operations and $O(\log N)$ active memory. In addition to the acceleration, more general asymptotically smooth kernels can be treated and the algorithm does not require a-priori knowledge of the number of time steps. The efficiency of the proposed method is demonstrated by application to some typical test problems.


翻译:具有记忆的动态系统的数字解决方案要求以进化方式对Volterra 集成操作员进行高效的评估。 在适当的分解后, 基本问题可以作为矩阵- 矢量产品, 使用较低的对角值但人口稠密的矩阵矩阵矩阵。 对于典型的应用, 如分数扩散或大规模动态系统, 延迟的延迟, 存储矩阵近似和完整的数据历史的存储存储存储存储存储存储存储成本将变得无法准确的数值缩略。 对于 Volterra- 整体类型的操作员来说, Sch\\ “ daldle” 、 Lopez- Fernandez 和 Lubich 等基本问题可以作为矩阵- 矩阵化的矩阵操作员 。 在原则上, 以美元( n\ log N) 或 大规模动态系统的复杂性来计算离散值的估值, 只需用 $( log N) 来存储数据完整历史的压缩版本 。 我们将这种算法可以被解释为 $mathcalal- adlical adal adal adloginal adal exal livesal ladeal lax 和 exal exal likedududeal exal exal exal ex ex ex exal lax lax 需要一些 $_ $_ $=xx exal exal exal exal 和 exmal exmal extrax $=xxx 。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
Python图像处理,366页pdf,Image Operators Image Processing in Python
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员