We are entering a rapidly unfolding future driven by the delivery of real-time computation services, such as industrial automation and augmented reality, collectively referred to as AgI services, over highly distributed cloud/edge computing networks. The interaction intensive nature of AgI services is accelerating the need for networking solutions that provide strict latency guarantees. In contrast to most existing studies that can only characterize average delay performance, we focus on the critical goal of delivering AgI services ahead of corresponding deadlines on a per-packet basis, while minimizing overall cloud network operational cost. To this end, we design a novel queuing system able to track data packets' lifetime and formalize the delay-constrained least-cost dynamic network control problem. To address this challenging problem, we first study the setting with average capacity (or resource budget) constraints, for which we characterize the delay-constrained stability region and design a near-optimal control policy leveraging Lyapunov optimization theory on an equivalent virtual network. Guided by the same principle, we tackle the peak capacity constrained scenario by developing the reliable cloud network control (RCNC) algorithm, which employs a two-way optimization method to make actual and virtual network flow solutions converge in an iterative manner. Extensive numerical results show the superior performance of the proposed control policy compared with the state-of-the-art cloud network control algorithm, and the value of guaranteeing strict end-to-end deadlines for the delivery of next-generation AgI services.
翻译:我们正进入一个迅速发展的未来,其驱动因素是提供实时计算服务,例如工业自动化和扩大现实,统称为AGI服务,对分布甚广的云层/顶端计算网络进行集中的计算服务。AGI服务的互动密集性质加快了网络化解决方案的需求,提供了严格的潜伏保障。与大多数现有研究相比,这些研究只能以平均延迟性表现为特征,我们侧重于一个关键目标,即在相应的最后期限之前提供AGI服务,同时尽量减少整个云网络运作成本。为此,我们设计了一个新型的排队系统,能够跟踪数据包的寿命并正式确定延迟限制的最低成本动态网络控制问题。为了解决这一具有挑战性的问题,我们首先以平均能力(或资源预算)限制来研究如何建立能够提供严格潜伏保障的网络解决方案。对此,我们以延迟性稳定区为特点,并设计一个近乎最佳的控制政策政策,利用Lyapunov优化理论在同等的虚拟网络上达到相应的期限。我们遵循同样的原则,通过开发可靠的云网络控制(RCC)算法来解决高峰能力受限情景。我们采用了一种双向最优化的方法,以便将稳定的云端和虚拟网络的终端数据流控制结果的交付结果的升级的系统,以显示高端控制结果的交付结果的交付结果。