Neural Radiance Fields (NeRFs) increase reconstruction detail for novel view synthesis and scene reconstruction, with applications ranging from large static scenes to dynamic human motion. However, the increased resolution and model-free nature of such neural fields come at the cost of high training times and excessive memory requirements. Recent advances improve the inference time by using complementary data structures yet these methods are ill-suited for dynamic scenes and often increase memory consumption. Little has been done to reduce the resources required at training time. We propose a method to exploit the redundancy of NeRF's sample-based computations by partially sharing evaluations across neighboring sample points. Our UNeRF architecture is inspired by the UNet, where spatial resolution is reduced in the middle of the network and information is shared between adjacent samples. Although this change violates the strict and conscious separation of view-dependent appearance and view-independent density estimation in the NeRF method, we show that it improves novel view synthesis. We also introduce an alternative subsampling strategy which shares computation while minimizing any violation of view invariance. UNeRF is a plug-in module for the original NeRF network. Our major contributions include reduction of the memory footprint, improved accuracy, and reduced amortized processing time both during training and inference. With only weak assumptions on locality, we achieve improved resource utilization on a variety of neural radiance fields tasks. We demonstrate applications to the novel view synthesis of static scenes as well as dynamic human shape and motion.


翻译:神经振荡场(NeRFs)增加了新观点合成和场景重建的重建细节,其应用范围从大片静态场景到动态人类运动。然而,这种神经场的分辨率和无模型性质的增加是以高培训时间和过度记忆要求为代价的。最近的进展通过使用补充数据结构改善了推导时间,但这些方法不适合动态场景,常常增加记忆消耗。在培训时间很少减少所需资源。我们提出了一个方法,通过在邻近取样点部分共享评价来利用NERF抽样计算中的冗余。我们的UNeRF结构受到UNet的启发,其中空间分辨率减少在网络中间,信息在邻近样品之间共享。虽然这种变化违反了严格和有意识地区分依赖于视觉的外观和对耐光度的估算,但我们展示了新颖的合成。我们还采用了另一种次级抽样战略,在最小的视野中进行计算,同时最大限度地减少任何差异。UeRF是原始NERF应用的插件模块,在网络中减少空间分辨率,信息在邻近样本中共享信息。我们的主要贡献包括缩小了对视野的视野的缩影印。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员