The classic censored regression model (tobit model) has been widely used in the economic literature. This model assumes normality for the error distribution and is not recommended for cases where positive skewness is present. Moreover, in regression analysis, it is well-known that a quantile regression approach allows us to study the influences of the explanatory variables on the dependent variable considering different quantiles. Therefore, we propose in this paper a quantile tobit regression model based on quantile-based log-symmetric distributions. The proposed methodology allows us to model data with positive skewness (which is not suitable for the classic tobit model), and to study the influence of the quantiles of interest, in addition to accommodating heteroscedasticity. The model parameters are estimated using the maximum likelihood method and an elaborate Monte Carlo study is performed to evaluate the performance of the estimates. Finally, the proposed methodology is illustrated using two female labor supply data sets. The results show that the proposed log-symmetric quantile tobit model has a better fit than the classic tobit model.
翻译:在经济文献中广泛使用了经典审查回归模型(比特模型) 。 这个模型假定出错分布的正常性, 不推荐给存在正偏差的情况。 此外, 在回归分析中, 众所周知, 量化回归法允许我们研究解释变量对考虑到不同孔数的依附变量的影响。 因此, 我们在此文件中提议了一个基于以四分位数为基础的日志对称分布的四分位回归模型。 这个拟议方法允许我们模拟正偏差的数据( 不适用于经典的比特模型), 并研究利害微分的影响, 以及适应超偏差性。 模型参数是使用最大可能性方法估算的, 并进行精心的蒙特卡洛研究, 以评价估算的性能。 最后, 我们用两个女性劳动力供给数据集来说明拟议的方法。 结果表明, 拟议的对正对等比比模型比经典的典型比重模型更合适 。