The paper studies a probabilistic notion of causes in Markov chains that relies on the counterfactuality principle and the probability-raising property. This notion is motivated by the use of causes for monitoring purposes where the aim is to detect faulty or undesired behaviours before they actually occur. A cause is a set of finite executions of the system after which the probability of the effect exceeds a given threshold. We introduce multiple types of costs that capture the consumption of resources from different perspectives, and study the complexity of computing cost-minimal causes.
翻译:论文研究了Markov链条中基于反事实原则和概率提高财产的因果关系概率概念,这一概念的动机是利用原因进行监测,目的是在实际发生之前发现错误或不可取的行为。 原因之一是对系统进行一系列有限的处决,在此之后,影响概率超过某一阈值。 我们引入了多种类型的成本,从不同角度记录资源的消耗情况,并研究计算成本最低原因的复杂性。