We develop an information-theoretic approach to study the Kneser--Poulsen conjecture in discrete geometry. This leads us to a broad question regarding whether R\'enyi entropies of independent sums decrease when one of the summands is contracted by a $1$-Lipschitz map. We answer this question affirmatively in various cases.
翻译:我们开发了一种信息理论方法来研究离散几何学中的Kneser-Poulsen预测。 这使我们产生了一个广泛的问题,即当一个总和被一美元-利普施茨地图承包时,独立金额的R'enyi 的离子体是否减少。 我们在不同情况下肯定地回答了这个问题。