This paper introduces a versatile, multi-layered technology to help support teaching and learning core computer architecture concepts. This technology, called CodeAPeel is already implemented in one particular form to describe instruction processing in compiler, assembly, and machine layers of a generic instruction set architecture by a comprehensive simulation of its fetch-decode-execute cycle as well as animation of the behavior of its CPU registers, RAM, VRAM, STACK memories, various control registers, and graphics screen. Unlike most educational CPU simulators that simulate a real processor such as MIPS or RISC-V, CodeAPeel is designed and implemented as a generic RISC instruction set architecture simulator with both scalar and vector instructions to provide a dual-mode processor simulator as described by Flynn's classification of SISD and SIMD processors. Vectorization of operations is built into the instruction repertoire of CodeAPeel, making it straightforward to simulate such processors with powerful vector instructions.


翻译:本文介绍了一种多层次的多功能技术,以帮助支持教学和学习核心计算机结构概念。这种技术称为CodeAPeel, 已经以一种特定的形式应用,通过全面模拟其抓取-decode-Execute 循环以及其CPU登记册、RAM、VRAM、STACK记忆、各种控制登记册和图形屏幕的行为动画,来描述通用指令结构结构的编译、组和机层的教学处理。与大多数模拟像MIPS或RISC-V这样的真实处理器的教育性CPU模拟器不同, CodeAPeel被设计和实施成一个通用的RISC指令结构模拟器,带有标度和矢量指示,以提供Flyn SISD 和 SIMD 处理器分类所描述的双模处理模拟器。 操作的矢量演算器被纳入了代码APeel 的指令汇编,使得用强大的矢量指示来模拟这类处理器变得简单。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Federated Learning with Personalization Layers
Arxiv
4+阅读 · 2019年12月2日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
6+阅读 · 2018年1月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员