We present PhoMoH, a neural network methodology to construct generative models of photo-realistic 3D geometry and appearance of human heads including hair, beards, an oral cavity, and clothing. In contrast to prior work, PhoMoH models the human head using neural fields, thus supporting complex topology. Instead of learning a head model from scratch, we propose to augment an existing expressive head model with new features. Concretely, we learn a highly detailed geometry network layered on top of a mid-resolution head model together with a detailed, local geometry-aware, and disentangled color field. Our proposed architecture allows us to learn photo-realistic human head models from relatively little data. The learned generative geometry and appearance networks can be sampled individually and enable the creation of diverse and realistic human heads. Extensive experiments validate our method qualitatively and across different metrics.
翻译:我们提出PhoMoH,一种构建真实 3D 几何和外观的人头生成模型的神经网络方法,包括发型、胡须、口腔和服装。与之前的工作不同,PhoMoH使用神经场来建模人头,从而支持复杂的拓扑结构。我们建议使用现有的表达力强的头部模型来增强一个新特性。具体地,我们学习一个高度详细的几何网络层,放在中分辨率头部模型上,连同一个详细、局部的几何感知和分离的颜色场。我们提出的架构使我们能够从相对较少的数据中学习出真实人头模型。学习的生成几何和外观网络可以单独采样,并能够创建多种多样和真实的人头。大量实验从质量和不同度量方面验证了我们的方法。