Malignant mesothelioma is classified into three histological subtypes, Epithelioid, Sarcomatoid, and Biphasic according to the relative proportions of epithelioid and sarcomatoid tumor cells present. Biphasic tumors display significant populations of both cell types. This subtyping is subjective and limited by current diagnostic guidelines and can differ even between expert thoracic pathologists when characterising the continuum of relative proportions of epithelioid and sarcomatoid components using a three class system. In this work, we develop a novel dual-task Graph Neural Network (GNN) architecture with ranking loss to learn a model capable of scoring regions of tissue down to cellular resolution. This allows quantitative profiling of a tumor sample according to the aggregate sarcomatoid association score of all the cells in the sample. The proposed approach uses only core-level labels and frames the prediction task as a dual multiple instance learning (MIL) problem. Tissue is represented by a cell graph with both cell-level morphological and regional features. We use an external multi-centric test set from Mesobank, on which we demonstrate the predictive performance of our model. We validate our model predictions through an analysis of the typical morphological features of cells according to their predicted score, finding that some of the morphological differences identified by our model match known differences used by pathologists. We further show that the model score is predictive of patient survival with a hazard ratio of 2.30. The code for the proposed approach, along with the dataset, is available at: https://github.com/measty/MesoGraph.
翻译:骨髓间间皮瘤被分为三种直系子类型: Epithelioid、 Sarcomatoid 和 Biphasic 。 根据上皮层细胞和沙眼肿瘤细胞的相对比例, 双脑肿瘤显示两种细胞类型的大量成份。 这种亚型是主观的, 受当前诊断准则的限制, 并且可能因专家的血清病理学家而有所不同, 使用三个等级系统来描述上皮和沙眼组成部分的相对比例的连续体。 在这项工作中, 我们开发了一个新型双塔式神经网络( GNNN) 结构, 并且根据现有的表层神经网络( GNN) 的相对比例进行排序损失, 以学习能够从组织区域评分到细胞分辨率的模型。 这样可以根据样本中所有细胞的沙眼间联系总分数来对肿瘤样本进行定量剖析。 提议的方法只使用核心等级标签, 并将预测任务框架作为双倍模型学习( MIL) 问题。 问题由包含细胞层次和地区特征的细胞级结构图解的分解路标表示。 我们使用一个外部的直径直径的直径直径路径路径路径路径路径路径路径的路径模型, 。 我们使用一个通过一个通过直径径比的直径比的直径测测的预测的模型来显示的直径测数据来显示。</s>