We present a splitting method for the one-dimensional Saint-Venant-Exner equations used for describing the bed evolution in shallow water systems. We adapt the flux vector splitting approach of Toro and Vazquez-Cend\`on and identify one subsystem of conservative equations (advection system) and one of non-conservative equations (pressure system), both having a very simple eigenstructure compared to the full system. The final numerical scheme is constructed using a Godunov-type path-conservative scheme for the pressure system and a simple conservative Godunov method for the advection system and solved following a coupled solution strategy. The resulting first-order accurate method is extended to second order of accuracy in space and time via the ADER approach together with an AENO reconstruction technique. Accuracy, robustness and well-balanced properties of the resulting scheme are assessed through a carefully selected suite of testcases. The scheme is exceedingly simple, accurate and robust as the sophisticated Godunov methods. A distinctive feature of the novel scheme is its flexibility in the choice of the sediment transport closure formula, which makes it particularly attractive for scientific and engineering applications.
翻译:我们提出了用于描述浅水系统中床位演变的一维Saint-Venant-Exner等式的分解方法。我们调整了Toro和Vazquez-Cend ⁇ on的通量矢量分解方法,并确定了保守方程式(适应系统)和非保守方程式(压力系统)的一个子子系统,两者都有一个与整个系统相比非常简单的天平结构。最后的数值方案是使用一种用于压力系统的Godunov型路径-保守性办法和一种用于平流系统的简单保守的Godunov方法来构建的,并采用一种组合式的解决方案。由此产生的第一级精确方法通过ADES方法扩展为空间和时间的第二顺序,同时使用AENO的重建技术。通过精心挑选的成套测试方案,对结果的准确性、稳健和平衡性进行了评估。这个方法非常简单、准确和稳健,与复杂的Godunov方法一样。这个新方案的一个特征是其在选择沉积物运输封闭公式时的灵活性,这使其对科学和工程特别具有吸引力。