In recent years, many applications have deployed incentive mechanisms to promote users' attention and engagement. Most incentive mechanisms determine specific incentive values based on users' attributes (e.g., preferences), while such information is unavailable in many real-world applications. Meanwhile, due to budget restrictions, realizing successful incentivization for all users can be challenging to complete. In this light, we consider leveraging social influence to maximize the incentivization result. We can directly incentivize influential users to affect more users, so the cost of incentivizing these users can be decreased. However, identifying influential users in a social network requires complete information about influence strength among users, which is impractical to acquire in real-world situations. In this research, we propose an end-to-end reinforcement learning-based framework, called Geometric Actor-Critic (GAC), to tackle the abovementioned problem. The proposed approach can realize effective incentive allocation without having prior knowledge about users' attributes. Three real-world social network datasets have been adopted in the experiments to evaluate the performance of GAC. The experimental results indicate that GAC can learn and apply effective incentive allocation policies in unknown social networks and outperform existing incentive allocation approaches.
翻译:近年来,许多应用程序都采用了激励机制来促使用户注意和接触,大多数激励机制根据用户的属性(如偏好)确定具体的激励价值,而许多现实世界应用程序却无法获得这类信息。与此同时,由于预算限制,实现所有用户成功激励可能难以完成。我们考虑利用社会影响力最大限度地提高激励效果。我们可以直接激励有影响力的用户影响更多的用户,从而降低激励这些用户的成本。然而,在社会网络中确定有影响力的用户需要关于用户影响力的完整信息,而在现实世界中获取这种信息是不切实际的。在这个研究中,我们提议了一个基于终端到终端强化学习的框架,称为几何法-Critic(GAC),以解决上述问题。拟议方法可以在不事先了解用户属性的情况下实现有效的激励分配。在评估全球通信网络绩效的实验中采用了三个真实世界社会网络数据集。实验结果表明,全球通信中心可以在未知的社会网络中学习和应用有效的激励分配政策,并超越现有激励形式分配办法。