Artificial Intelligence-Generated Content (AIGC) refers to the use of AI to automate the information creation process while fulfilling the personalized requirements of users. However, due to the instability of AIGC models, e.g., the stochastic nature of diffusion models, the quality and accuracy of the generated content can vary significantly. In wireless edge networks, the transmission of incorrectly generated content may unnecessarily consume network resources. Thus, a dynamic AIGC service provider (ASP) selection scheme is required to enable users to connect to the most suited ASP, improving the users' satisfaction and quality of generated content. In this article, we first review the AIGC techniques and their applications in wireless networks. We then present the AIGC-as-a-service (AaaS) concept and discuss the challenges in deploying AaaS at the edge networks. Yet, it is essential to have performance metrics to evaluate the accuracy of AIGC services. Thus, we introduce several image-based perceived quality evaluation metrics. Then, we propose a general and effective model to illustrate the relationship between computational resources and user-perceived quality evaluation metrics. To achieve efficient AaaS and maximize the quality of generated content in wireless edge networks, we propose a deep reinforcement learning-enabled algorithm for optimal ASP selection. Simulation results show that the proposed algorithm can provide a higher quality of generated content to users and achieve fewer crashed tasks by comparing with four benchmarks, i.e., overloading-avoidance, random, round-robin policies, and the upper-bound schemes.


翻译:在无线边缘网络中,错误生成的内容的传输可能不必要地消耗网络资源。因此,需要一个动态的AIGC服务提供商(ASP)选择计划,使用户能够与最合适的ASP连接,提高用户对生成内容的满意度和质量。在本篇文章中,我们首先审查AIGC技术及其在无线网络中的应用。我们然后介绍AIGC作为服务(AaAS)的概念,讨论在边缘网络部署AaAS方面的挑战。然而,必须具备业绩衡量标准来评价AIGC服务的准确性。因此,我们需要一个动态的AIGC服务提供商(ASP)选择计划,使用户能够与最合适的ASP连接,提高用户对生成内容的满意度和质量。我们首先审查AIGC技术及其在无线网络中的应用。我们然后提出AIGC技术及其应用。我们随后提出AIGC作为服务(AAAAAS)的软件质量和准确度(AAAAAAA)系统(AAAA)系统(AAA)系统进行高效率的升级的升级和升级的升级的系统(SLA)系统选择结果。我们提出一个能产生最优化的升级的升级的升级的系统(AAAAAA)系统(SAS)系统(A)和升级的升级的升级的升级的升级的升级和升级的升级的升级的升级的系统(AA)系统(A)系统(A)系统(AA)和升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级数据。

1
下载
关闭预览

相关内容

ASP是Active Server Page的缩写,意为“动态服务器页面”。ASP是微软公司开发的代替CGI脚本程序的一种应用,它可以与数据库和其它程序进行交互,是一种简单、方便的编程工具。
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员