Understanding and modeling the dynamics of human gaze behavior in 360$^\circ$ environments is a key challenge in computer vision and virtual reality. Generative adversarial approaches could alleviate this challenge by generating a large number of possible scanpaths for unseen images. Existing methods for scanpath generation, however, do not adequately predict realistic scanpaths for 360$^\circ$ images. We present ScanGAN360, a new generative adversarial approach to address this challenging problem. Our network generator is tailored to the specifics of 360$^\circ$ images representing immersive environments. Specifically, we accomplish this by leveraging the use of a spherical adaptation of dynamic-time warping as a loss function and proposing a novel parameterization of 360$^\circ$ scanpaths. The quality of our scanpaths outperforms competing approaches by a large margin and is almost on par with the human baseline. ScanGAN360 thus allows fast simulation of large numbers of virtual observers, whose behavior mimics real users, enabling a better understanding of gaze behavior and novel applications in virtual scene design.


翻译:在360 $ ⁇ circ$的环境中理解和模拟人类凝视行为的动态是计算机视觉和虚拟现实中的一项关键挑战。 生成对抗性方法可以通过生成大量可能的隐形图像的扫描路径来缓解这一挑战。 但是,现有的扫描虫生成方法不能充分预测360 $ ⁇ circ$图像的现实扫描路径。 我们展示了ScanGAN360, 这是一种解决这一具有挑战性问题的新型基因化对抗方法。 我们的网络生成器是针对代表隐形环境的360 $ ⁇ circ$ 图像的具体特性设计的。 具体来说,我们通过利用动态时间扭曲的球形适应功能来实现这一目标, 并提出了360 ⁇ circ$ 扫描路径的新参数。 我们的扫描路径质量超过了与人类基线相竞争的方法, 几乎接近于人类基线。 因此, ScanGAN360 能够快速模拟大量虚拟观察者, 其行为模拟真实用户的行为,从而能够更好地了解视觉设计中的视觉行为和新应用。

0
下载
关闭预览

相关内容

中国领先的互联网安全服务与软件公司,主营以360安全卫士、360浏览器等为代表的网络安全产品。主要依靠在线广告、互联网增值服务创收。目前,公司PC端产品和服务的月活跃用户为4.42亿,市场渗透率为95%。

2012年8月,公司推出「360 搜索」业务,正式进军搜索引擎市场。作为中国互联网界最受争议的公司,奇虎360先后与腾讯、百度等互联网巨头产生过激烈的产品竞争。

2011年3月,公司以「QIHU」为代码正式登陆纽约证券交易所。

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月18日
Pluralistic Image Completion
Arxiv
8+阅读 · 2019年3月11日
3D Face Modeling from Diverse Raw Scan Data
Arxiv
5+阅读 · 2019年2月13日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员