This paper investigates the propreties of the persistence diagrams stemming from almost surely continuous random processes on $[0,t]$. We focus our study on two variables which together characterize the barcode : the number of points of the persistence diagram inside a rectangle $]\!-\!\infty,x]\times [x+\varepsilon,\infty[$, $N^{x,x+\varepsilon}$ and the number of bars of length $\geq \varepsilon$, $N^\varepsilon$. For processes with the strong Markov property, we show both of these variables admit a moment generating function and in particular moments of every order. Switching our attention to semimartingales, we show the asymptotic behaviour of $N^\varepsilon$ and $N^{x,x+\varepsilon}$ as $\varepsilon \to 0$ and of $N^\varepsilon$ as $\varepsilon \to \infty$. Finally, we study the repercussions of the classical stability theorem of barcodes and illustrate our results with some examples, most notably Brownian motion and empirical functions converging to the Brownian bridge.
翻译:本文调查了来自$[0,t] 上几乎肯定连续随机过程的持久性图的特性。 我们的研究集中在两个变量上, 它们是条形码的特性: 矩形内持久性图的点数!\\\!\\\\ infty,x] 时间[x ⁇ varepsilon,\infty,\$[$, $, $, $, $, x varepsilon] $, 长度条数$\q \varepsilon$, $N ⁇ varepsilon$。 对于具有强大的马可夫属性的工艺, 我们发现这两个变量都存在一个瞬间生成功能, 特别是每个顺序的时段。 将我们的注意力转向半边距 。 我们展示了 $N ⁇ varepsilon, 和 $ náx, $ $, $ $áx, varvarepsilon} 和 $ $ n ⁇ varepslon, $。 对于具有强大特性的工艺特性的流程, 我们研究最显著的模型和Browrow 的模型的模型的模型的模型的模型和模型。