We propose a novel extremal dependence measure called the partial tail-correlation coefficient (PTCC), which is an analogy of the partial correlation coefficient in the non-extreme setting of multivariate analysis. The construction of the new coefficient is based on the framework of multivariate regular variation and transformed-linear algebra operations. We show how this coefficient allows identifying pairs of variables that have partially uncorrelated tails given the other variables in a random vector. Unlike other recently introduced asymptotic independence frameworks for extremes, our approach requires only minimal modeling assumptions and can thus be used generally in exploratory analyses to learn the structure of extremal graphical models. Thanks to representations similar to traditional graphical models where edges correspond to the non-zero entries of a precision matrix, we can exploit classical inference methods for high-dimensional data, such as the graphical LASSO with Laplacian spectral constraints, to efficiently learn the extremal network structure via the PTCC. The application of our new tools to study extreme risk networks for two datasets extracts meaningful extremal structures and allows for relevant interpretations. Specifically, our analysis of extreme river discharges observed at a set of monitoring stations in the upper Danube basin shows that our proposed method is able to recover the true river flow network quite accurately, and our analysis of historical global currency exchange rate data reveals interesting insights into the dynamical interactions between major economies during critical periods of stress.


翻译:我们提出一种新的极端依赖性测量方法,称为部分尾部-关系系数(PTCC),这是在多变量分析的非极端设置中,部分相关系数的类比。新系数的构建基于多变量常规变异和直线代数转换操作框架。我们展示了该系数如何允许识别在随机矢量中存在其他变量的、部分不相干尾尾部的变量组合。与最近为极端情况引入的微弱独立框架不同的是,我们的方法仅需要最低限度的模型假设,因此可以普遍用于探索性分析,以了解极端图形模型的结构。由于与传统的图形模型相似的表达方式,其边缘与精确矩阵的非零条目相对。我们可以利用传统推导方法来识别高维数据,如LASSO和Laplacian光谱限制等图形,以便通过PTCC有效学习极端的网络结构。我们的新工具用于研究两个数据集的极端风险网络,从而提取有意义的极端极端的模型结构,从而可以用于学习极端的图形图形图形模型模型结构的结构结构。由于传统的图形模型模型模型的展示了我们所观测到的主要的河流流流动数据流系分析结果,因此,因此可以精确地展示了我们所观测的河流流流流流数据流数据流数据流数据流系的流系的流数据流系的流系的流系系系的精确地分析。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
10+阅读 · 2020年6月12日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
15+阅读 · 2019年4月4日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员