In the phase retrieval problem one seeks to recover an unknown $n$ dimensional signal vector $\mathbf{x}$ from $m$ measurements of the form $y_i = |(\mathbf{A} \mathbf{x})_i|$ where $\mathbf{A}$ denotes the sensing matrix. A popular class of algorithms for this problem are based on approximate message passing. For these algorithms, it is known that if the sensing matrix $\mathbf{A}$ is generated by sub-sampling $n$ columns of a uniformly random (i.e. Haar distributed) orthogonal matrix, in the high dimensional asymptotic regime ($m,n \rightarrow \infty, n/m \rightarrow \kappa$), the dynamics of the algorithm are given by a deterministic recursion known as the state evolution. For the special class of linearized message passing algorithms, we show that the state evolution is universal: it continues to hold even when $\mathbf{A}$ is generated by randomly sub-sampling columns of certain deterministic orthogonal matrices such as the Hadamard-Walsh matrix, provided the signal is drawn from a Gaussian prior.


翻译:在阶段检索问题中, 一个人试图从以$y_ i = {( mathbf{A}\ mathbff{x}}}_ 美元表示感测矩阵。 这个问题流行的算法类别以传递大致信息为基础。 对于这些算法, 已知的是, 如果感测矩阵 $\mathbf{A} 美元是用一个单一随机( e. haar 分布的) 或直方矩阵的一列的子抽样抽样抽样采集的, 美元 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = orgromas = = = = = = = 或 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
已删除
将门创投
9+阅读 · 2018年12月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月18日
Arxiv
0+阅读 · 2021年1月17日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
已删除
将门创投
9+阅读 · 2018年12月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员