We propose a novel two-layered attention network based on Bidirectional Long Short-Term Memory for sentiment analysis. The novel two-layered attention network takes advantage of the external knowledge bases to improve the sentiment prediction. It uses the Knowledge Graph Embedding generated using the WordNet. We build our model by combining the two-layered attention network with the supervised model based on Support Vector Regression using a Multilayer Perceptron network for sentiment analysis. We evaluate our model on the benchmark dataset of SemEval 2017 Task 5. Experimental results show that the proposed model surpasses the top system of SemEval 2017 Task 5. The model performs significantly better by improving the state-of-the-art system at SemEval 2017 Task 5 by 1.7 and 3.7 points for sub-tracks 1 and 2 respectively.
翻译:我们建议建立一个基于双向长期短期记忆的新颖的双层关注网络,用于情感分析。新颖的两层关注网络利用外部知识基础来改进情绪预测。它使用WordNet产生的知识图嵌入。我们通过将双层关注网络与基于支持矢量递增的监管模型相结合,利用多层透视网络进行情感分析。我们评估了我们关于SemEval 2017任务5基准数据集的模型。实验结果显示,拟议的模型超过了SemEval 2017任务5的顶级系统。通过将SemEval 2017任务5的最新系统分别改进1.7和3.7个分轨1和2的分轨,该模型的表现显著改善。