Transferring human motion to a mobile robotic manipulator and ensuring safe physical human-robot interaction are crucial steps towards automating complex manipulation tasks in human-shared environments. In this work, we present a novel human to robot whole-body motion transfer framework. We propose a general solution to the correspondence problem, namely a mapping between the observed human posture and the robot one. For achieving real-time imitation and effective redundancy resolution, we use the whole-body control paradigm, proposing a specific task hierarchy, and present a differential drive control algorithm for the wheeled robot base. To ensure safe physical human-robot interaction, we propose a novel variable admittance controller that stably adapts the dynamics of the end-effector to switch between stiff and compliant behaviors. We validate our approach through several real-world experiments with the TIAGo robot. Results show effective real-time imitation and dynamic behavior adaptation. This constitutes an easy way for a non-expert to transfer a manipulation skill to an assistive robot.
翻译:将人类运动转移到移动机器人操纵器和确保人类-机器人安全物理互动是实现人类共享环境中复杂操作任务自动化的关键步骤。 在这项工作中,我们展示了一个新的人与机器人整体运动转移框架。 我们提出了对通信问题的总体解决办法,即在观察到的人类姿态和机器人姿势之间绘制地图。 为了实现实时模拟和有效冗余分辨率,我们使用全机控制模式,提出具体任务等级,并为轮式机器人基地提供差异驱动控制算法。为了确保安全的人体-机器人物理互动,我们提议了一个新的变量接收控制器,以稳步调整终端效应的动态,在僵硬和顺从行为之间转换。我们通过与TIAGO机器人进行的若干现实世界实验验证了我们的方法。结果显示有效的实时模拟和动态行为适应。这对非专家将操纵技能转移到辅助机器人来说是一个容易的方法。