The image quality of portable supine chest radiographs is inherently poor due to low contrast and high noise. The endotracheal intubation detection requires the locations of the endotracheal tube (ETT) tip and carina. The goal is to find the distance between the ETT tip and the carina in chest radiography. To overcome such a problem, we propose a feature extraction method with Mask R-CNN. The Mask R-CNN predicts a tube and a tracheal bifurcation in an image. Then, the feature extraction method is used to find the feature point of the ETT tip and that of the carina. Therefore, the ETT-carina distance can be obtained. In our experiments, our results can exceed 96\% in terms of recall and precision. Moreover, the object error is less than $4.7751\pm 5.3420$ mm, and the ETT-carina distance errors are less than $5.5432\pm 6.3100$ mm. The external validation shows that the proposed method is a high-robustness system. According to the Pearson correlation coefficient, we have a strong correlation between the board-certified intensivists and our result in terms of ETT-carina distance.
翻译:由于对比度低和噪音高,便携式松皮胸射线仪的图像质量本来就很差。 内径插管探测需要内径切管(ETT)端端和卡丽娜的位置。 目标是在胸腔射线中找到 ETT 端端与卡丽娜之间的距离。 为了克服这个问题, 我们建议与Mask R- CNN 使用特效提取方法。 面具 R- CNN 预测一个管子和图像中的气相分离。 然后, 特效提取方法被用于寻找 ETT 端和卡丽娜的特征点。 因此, 可以获得 ETT- car 距离 。 在我们的实验中, 我们的结果在召回和精确方面可以超过 96 ⁇ 。 此外, 对象误差小于4. 7751 pm 5. 3420 毫米, 而 ETT- Car 远程误差小于 5. 54 432 pm 6.3100 毫米。 外部验证显示, 拟议的方法是一种高压系统。 根据Pearson 相关系数和 ETTF 的远端系数, 我们有一个强大的关联。