Understanding Transformer-based models has attracted significant attention, as they lie at the heart of recent technological advances across machine learning. While most interpretability methods rely on running models over inputs, recent work has shown that a zero-pass approach, where parameters are interpreted directly without a forward/backward pass is feasible for some Transformer parameters, and for two-layer attention networks. In this work, we present a theoretical analysis where all parameters of a trained Transformer are interpreted by projecting them into the embedding space, that is, the space of vocabulary items they operate on. We derive a simple theoretical framework to support our arguments and provide ample evidence for its validity. First, an empirical analysis showing that parameters of both pretrained and fine-tuned models can be interpreted in embedding space. Second, we present two applications of our framework: (a) aligning the parameters of different models that share a vocabulary, and (b) constructing a classifier without training by ``translating'' the parameters of a fine-tuned classifier to parameters of a different model that was only pretrained. Overall, our findings open the door to interpretation methods that, at least in part, abstract away from model specifics and operate in the embedding space only.
翻译:理解基于变异器的模型吸引了人们的极大关注,因为这些模型是跨机器学习的最新技术进步的核心所在。虽然大多数可解释性方法依靠的是运行模型而不是投入,但最近的工作表明,对一些变异器参数和两层关注网络来说,可以采用零通过方法,即直接解释参数,而没有前向/后向过过往的参数。在这项工作中,我们提出了一个理论分析,将经过训练的变异器的所有参数投射到嵌入空间,即它们运行的词汇项目空间,从而将其所有参数都解释成。我们从一个简单的理论框架中获取一个支持我们的论点的简单理论框架,并为它的有效性提供充足的证据。首先,一项经验分析表明预先培训和经过精细调整的模型的参数可以在嵌入空间中加以解释。第二,我们提出了我们框架的两种应用:(a) 将共享词汇的不同模型的参数加以协调,以及(b) 将精细调的分类器的参数投放到一个只是预先训练的不同模型的参数上。总体而言,我们的调查结果打开了解释方法的大门,至少在部分上将空间抽象地从特定的嵌入空间和操作中进行。