Progress in GANs has enabled the generation of high-resolution photorealistic images of astonishing quality. StyleGANs allow for compelling attribute modification on such images via mathematical operations on the latent style vectors in the W/W+ space that effectively modulate the rich hierarchical representations of the generator. Such operations have recently been generalized beyond mere attribute swapping in the original StyleGAN paper to include interpolations. In spite of many significant improvements in StyleGANs, they are still seen to generate unnatural images. The quality of the generated images is predicated on two assumptions; (a) The richness of the hierarchical representations learnt by the generator, and, (b) The linearity and smoothness of the style spaces. In this work, we propose a Hierarchical Semantic Regularizer (HSR) which aligns the hierarchical representations learnt by the generator to corresponding powerful features learnt by pretrained networks on large amounts of data. HSR is shown to not only improve generator representations but also the linearity and smoothness of the latent style spaces, leading to the generation of more natural-looking style-edited images. To demonstrate improved linearity, we propose a novel metric - Attribute Linearity Score (ALS). A significant reduction in the generation of unnatural images is corroborated by improvement in the Perceptual Path Length (PPL) metric by 16.19% averaged across different standard datasets while simultaneously improving the linearity of attribute-change in the attribute editing tasks.
翻译:在 GAN 中, 生成了高分辨率高光光现实图像, 取得了惊人质量的惊人质量。 StyGAN 允许通过W/W+空间中潜在风格矢量的数学操作在W/W+空间中对此类图像进行令人强烈的属性修改, 以有效调节发电机的丰富等级表示, 此类操作最近普遍化, 不仅仅是在原SyGAN 纸张中仅仅进行属性互换, 包括内插图。 尽管SysteGAN 有许多重大改进, 仍然可以看到它们生成了不真实的图像。 生成图像的质量取决于两种假设;(a) 发电机所学会的分级代表结构的丰富性, 以及(b) 风格空间的线性向和(b) 在WW/W+空间中,我们提议建立一个高层次的S/W/W/W+ 显示, 将发电机所学的等级代表与在大量数据量的网络培训前所学到的相应强强点特征相匹配。 HSR显示不仅改进了发电机的显示, 也改进了视觉风格空间的线性和平整和平稳, 导致产生更自然看更看的样式经调整的图像的图像的图像, (我们建议16年级平级平级平级平级平级平级平级平级平级平级平级平级平级平级平级平级平级平级平级平级平平平平级平级平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平