We study the problem of counting the number of homomorphisms from an input graph $G$ to a fixed (quantum) graph $\bar{H}$ in any finite field of prime order $\mathbb{Z}_p$. The subproblem with graph $H$ was introduced by Faben and Jerrum~[ToC'15] and its complexity is still uncharacterised despite active research, e.g. the very recent work of Focke, Goldberg, Roth, and Zivn\'y~[SODA'21]. Our contribution is threefold. First, we introduce the study of quantum graphs to the study of modular counting homomorphisms. We show that the complexity for a quantum graph $\bar{H}$ collapses to the complexity criteria found at dimension 1: graphs. Second, in order to prove cases of intractability we establish a further reduction to the study of bipartite graphs. Lastly, we establish a dichotomy for all bipartite $(K_{3,3}\backslash\{e\},\, {domino})$-free graphs by a thorough structural study incorporating both local and global arguments. This result subsumes all results on bipartite graphs known for all prime moduli and extends them significantly. Even for the subproblem with $p=2$ this establishes new results.


翻译:我们研究从一个输入图形$G$到一个固定(quantum)的图形$\bar{H} $\bar{H} $\\mathb{p$。 数字$的子问题由Faben和Jerrum~[ToC'15] 提出,尽管进行了积极研究,例如Focke、Goldberg、Roth和Zivn\'y~[SODA'21]最近的工作,但我们的贡献是三重的。 首先,我们将量数图表的研究引入模块计算同系主义的研究。 我们显示量数图$\bar{H} 的复杂程度与第1维的复杂标准是崩溃的。 第二,为了证明易懂性案例,我们进一步缩小了对双面图表的研究。 最后,我们为所有双面的$(K%3,3 ⁇ backslaxlash______________} {rma_r_br_blate_blook) 所有的量数组图, 通过彻底的原始和原始的图表结果,将所有已知的平面的图结果确定。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月9日
Arxiv
0+阅读 · 2021年4月6日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员