We consider fair allocation of indivisible items in a model with goods, chores, and copies, as a unified framework for studying: (1)~the existence of EFX and other solution concepts for goods with copies; (2)~the existence of EFX and other solution concepts for chores. We establish a tight relation between these issues via two conceptual contributions: First, a refinement of envy-based fairness notions that we term envy \emph{without commons} (denoted $\efxwc$ when applied to EFX). Second, a formal \emph{duality theorem} relating the existence of a host of (refined) fair allocation concepts for copies to their existence for chores. We demonstrate the usefulness of our duality result by using it to characterize the existence of EFX for chores through the dual environment, as well as to prove EFX existence in the special case of leveled preferences over the chores. We further study the hierarchy among envy-freeness notions without commons and their $\alpha$-MMS guarantees, showing for example that any $\efxwc$ allocation guarantees at least $\frac{4}{11}$-MMS for goods with copies.
翻译:我们认为,在货物、杂活和副本的模型中公平分配不可分割的项目是一个统一的研究框架:(1) 存在EFX和其他有副本的商品解决方案概念;(2) 存在EFX和其他有副本的杂活解决方案概念;我们通过两个概念贡献,在这些问题之间建立密切的关系:第一,完善我们称为嫉妒的基于嫉妒的公平概念,我们称之为嫉妒\emph{没有公物的(在应用EFX时注明$efxwc$);第二,一个正式的\emph{qualitysorem}关于存在大量(经改进的)关于复制品的公平分配概念,以证明我们通过双重环境将EFX作为杂活的特征,以及证明在对杂活品有固定偏好的特殊情况下EFX的存在。我们进一步研究了没有公物的无嫉妒性概念的等级,以及它们的$\alpha$-MS-MS保证,例如,任何美元\efxxl分配的保证至少以美元和美元/MMS4}11的复印件。