The lack of fine-grained joints such as hand fingers is a fundamental performance bottleneck for state of the art skeleton action recognition models trained on the largest action recognition dataset, NTU-RGBD. To address this bottleneck, we introduce a new skeleton based human action dataset - NTU60-X. In addition to the 25 body joints for each skeleton as in NTU-RGBD, NTU60-X dataset includes finger and facial joints, enabling a richer skeleton representation. We appropriately modify the state of the art approaches to enable training using the introduced dataset. Our results demonstrate the effectiveness of NTU60-X in overcoming the aforementioned bottleneck and improve state of the art performance, overall and on hitherto worst performing action categories.
翻译:缺乏精细的接合点,如手手指,是按最大行动识别数据集NTU-RGBD培训的先进骨骼行动识别模型的基本性能瓶颈。 为了解决这一瓶颈问题,我们引入了新的基于骨骼的人类行动数据集NTU60-X。 除了NTU-RGBD中每个骨骼的25个身体连接点外,NTU60-X数据集包括手指和面部连接,使得骨骼代表更加丰富。我们适当修改最新方法,以便利用引入的数据集进行培训。我们的结果表明NTU60-X在克服上述瓶颈和改善总体和迄今最差的行动类别方面的效力。