Motion artifacts are a pervasive problem in MRI, leading to misdiagnosis or mischaracterization in population-level imaging studies. Current retrospective rigid intra-slice motion correction techniques jointly optimize estimates of the image and the motion parameters. In this paper, we use a deep network to reduce the joint image-motion parameter search to a search over rigid motion parameters alone. Our network produces a reconstruction as a function of two inputs: corrupted k-space data and motion parameters. We train the network using simulated, motion-corrupted k-space data generated from known motion parameters. At test-time, we estimate unknown motion parameters by minimizing a data consistency loss between the motion parameters, the network-based image reconstruction given those parameters, and the acquired measurements. Intra-slice motion correction experiments on simulated and realistic 2D fast spin echo brain MRI achieve high reconstruction fidelity while retaining the benefits of explicit data consistency-based optimization. Our code is publicly available at https://www.github.com/nalinimsingh/neuroMoCo.
翻译:移动装置是磁共振成像研究中普遍存在的一个问题,导致人口层成像研究中的误判或误定性。当前追溯性僵硬的切片运动修正技术共同优化图像和运动参数的估计。在本文中,我们使用一个深网络,将图像-移动参数联合搜索减少到仅对僵硬运动参数的搜索。我们的网络根据两个输入的功能进行重建:腐蚀的 k-空间数据和运动参数。我们使用已知运动参数产生的模拟、运动破碎的 k-空间数据对网络进行培训。在测试时,我们通过尽量减少运动参数、基于网络的图像重建与获得的测量之间的数据一致性损失来估计未知的动作参数。模拟和现实的2D快速回旋脑MRI的静动修正实验实现了高度重建忠诚,同时保留了以数据一致性为基础的明确优化的好处。我们的代码可在https://www.github.com/nalinimsingh/neuroMoco公开查阅。