We propose a benchmark to measure whether a language model is truthful in generating answers to questions. The benchmark comprises 817 questions that span 38 categories, including health, law, finance and politics. We crafted questions that some humans would answer falsely due to a false belief or misconception. To perform well, models must avoid generating false answers learned from imitating human texts. We tested GPT-3, GPT-Neo/J, GPT-2 and a T5-based model. The best model was truthful on 58% of questions, while human performance was 94%. Models generated many false answers that mimic popular misconceptions and have the potential to deceive humans. The largest models were generally the least truthful. For example, the 6B-parameter GPT-J model was 17% less truthful than its 125M-parameter counterpart. This contrasts with other NLP tasks, where performance improves with model size. However, this result is expected if false answers are learned from the training distribution. We suggest that scaling up models alone is less promising for improving truthfulness than fine-tuning using training objectives other than imitation of text from the web.


翻译:我们提出了一个衡量语言模式在提出问题答案时是否真实的基准。基准包含包括38个类别,包括卫生、法律、金融和政治的817个问题。我们设计了一些问题,某些人会因为错误的信念或误解而作出错误的答复。为了很好地运行,模型必须避免从模仿人文文本中得出错误的答案。我们测试了GPT-3、GPT-Neo/J、GPT-2和基于T5的模型。最佳模型在58%的问题上是真实的,而人类表现为94%。模型产生了许多假的答案,模仿了流行的误解,并有可能欺骗人类。最大的模型一般是最不真实的。例如,6B参数GPT-J模型比125M参数对应模型少17%的真实性。这与其他NLP任务相比,其性能随着模型规模的提高。但是,如果从培训分布中学习错误的答案,则预期会得出这样的结果。我们认为,仅仅扩大模型的规模比利用网络文本以外的培训目标来改进真实性更不那么有希望。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
21+阅读 · 2021年2月6日
专知会员服务
123+阅读 · 2020年9月8日
【资源】问答阅读理解资源列表
专知
3+阅读 · 2020年7月25日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月4日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Arxiv
3+阅读 · 2018年12月18日
VIP会员
相关资讯
【资源】问答阅读理解资源列表
专知
3+阅读 · 2020年7月25日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员