Data augmentation is a commonly applied technique with two seemingly related advantages. With this method one can increase the size of the training set generating new samples and also increase the invariance of the network against the applied transformations. Unfortunately all images contain both relevant and irrelevant features for classification therefore this invariance has to be class specific. In this paper we will present a new method which uses saliency maps to restrict the invariance of neural networks to certain regions, providing higher test accuracy in classification tasks.
翻译:数据增强是一种普遍应用的技术,有两个似乎相关的优势。 通过这种方法,可以增加产生新样本的成套培训的规模,同时也可以增加网络对应用变异的偏差。不幸的是,所有图像都包含相关和无关的分类特征,因此这种变异必须是特定的类别。在本文件中,我们将提出一种新的方法,使用突出的地图将神经网络的变异限制在某些地区,在分类任务中提供更高的测试准确性。