We present a novel mesh-based learning approach (N-Cloth) for plausible 3D cloth deformation prediction. Our approach is general and can handle cloth or obstacles represented by triangle meshes with arbitrary topology. We use graph convolution to transform the cloth and object meshes into a latent space to reduce the non-linearity in the mesh space. Our network can predict the target 3D cloth mesh deformation based on the state of the initial cloth mesh template and the target obstacle mesh. Our approach can handle complex cloth meshes with up to $100$K triangles and scenes with various objects corresponding to SMPL humans, Non-SMPL humans, or rigid bodies. In practice, our approach demonstrates good temporal coherence between successive input frames and can be used to generate plausible cloth simulation at $30-45$ fps on an NVIDIA GeForce RTX 3090 GPU. We highlight its benefits over prior learning-based methods and physically-based cloth simulators.


翻译:我们提出了一个新的基于网格的学习方法(N-Cloth),以进行可信的三维布质变形预测。我们的方法是一般性的,可以处理带有任意地形的三角模头的布料或障碍。我们用图解变形法将布料和外壳体变成一个潜在的空间,以减少网格空间的非线性。我们的网络可以预测基于初始布质网格模板和目标障碍网格状态的目标3D布色变形。我们的方法可以处理与SMPL人类、非SMPL人类或僵硬体相匹配的各种物体的复杂布料,其三角和场景价值高达100美元。在实践中,我们的方法显示了连续输入框架之间的时间协调性,可以用来生成30-45美元的光谱,在NVIDICA Geforce RTX 3090 GPU上进行合理的布质模拟。我们强调它比先前的学习方法和基于实际的布料模拟器的好处。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【NYU-WESLEY MADDOX】贝叶斯神经网络教程,83页ppt
专知会员服务
60+阅读 · 2021年4月15日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度学习视频中多目标跟踪:论文综述
专知会员服务
94+阅读 · 2019年10月13日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
“CVPR 2020 接受论文列表 1470篇论文都在这了
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
997篇-历史最全生成对抗网络(GAN)论文串烧
深度学习与NLP
16+阅读 · 2018年6月26日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
【紫冬报告】吴毅红研究员:2017以来的2D到3D
中国科学院自动化研究所
11+阅读 · 2018年5月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
4+阅读 · 2020年10月18日
3D Face Modeling from Diverse Raw Scan Data
Arxiv
5+阅读 · 2019年2月13日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
997篇-历史最全生成对抗网络(GAN)论文串烧
深度学习与NLP
16+阅读 · 2018年6月26日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
【紫冬报告】吴毅红研究员:2017以来的2D到3D
中国科学院自动化研究所
11+阅读 · 2018年5月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员