We present a novel mesh-based learning approach (N-Cloth) for plausible 3D cloth deformation prediction. Our approach is general and can handle cloth or obstacles represented by triangle meshes with arbitrary topology. We use graph convolution to transform the cloth and object meshes into a latent space to reduce the non-linearity in the mesh space. Our network can predict the target 3D cloth mesh deformation based on the state of the initial cloth mesh template and the target obstacle mesh. Our approach can handle complex cloth meshes with up to $100$K triangles and scenes with various objects corresponding to SMPL humans, Non-SMPL humans, or rigid bodies. In practice, our approach demonstrates good temporal coherence between successive input frames and can be used to generate plausible cloth simulation at $30-45$ fps on an NVIDIA GeForce RTX 3090 GPU. We highlight its benefits over prior learning-based methods and physically-based cloth simulators.
翻译:我们提出了一个新的基于网格的学习方法(N-Cloth),以进行可信的三维布质变形预测。我们的方法是一般性的,可以处理带有任意地形的三角模头的布料或障碍。我们用图解变形法将布料和外壳体变成一个潜在的空间,以减少网格空间的非线性。我们的网络可以预测基于初始布质网格模板和目标障碍网格状态的目标3D布色变形。我们的方法可以处理与SMPL人类、非SMPL人类或僵硬体相匹配的各种物体的复杂布料,其三角和场景价值高达100美元。在实践中,我们的方法显示了连续输入框架之间的时间协调性,可以用来生成30-45美元的光谱,在NVIDICA Geforce RTX 3090 GPU上进行合理的布质模拟。我们强调它比先前的学习方法和基于实际的布料模拟器的好处。