Human character animation is often critical in entertainment content production, including video games, virtual reality or fiction films. To this end, deep neural networks drive most recent advances through deep learning and deep reinforcement learning. In this article, we propose a comprehensive survey on the state-of-the-art approaches based on either deep learning or deep reinforcement learning in skeleton-based human character animation. First, we introduce motion data representations, most common human motion datasets and how basic deep models can be enhanced to foster learning of spatial and temporal patterns in motion data. Second, we cover state-of-the-art approaches divided into three large families of applications in human animation pipelines: motion synthesis, character control and motion editing. Finally, we discuss the limitations of the current state-of-the-art methods based on deep learning and/or deep reinforcement learning in skeletal human character animation and possible directions of future research to alleviate current limitations and meet animators' needs.


翻译:人类性格动画在娱乐内容制作中往往至关重要,包括视频游戏、虚拟现实或虚构电影。为此,深神经网络通过深层学习和深强化学习推动最新进展。在本篇文章中,我们提议对基于骨骼人类性格动画的深层学习或深强化学习的先进方法进行全面调查。首先,我们引入运动数据表述、最常见的人类运动数据集和如何加强基本深层模型以促进对运动数据的空间和时间模式的学习。第二,我们涵盖最新技术方法,将人类动画管道的应用分为三大系列:运动合成、性格控制和运动编辑。最后,我们讨论了目前以深层次学习和(或)深强化人类性格学习为基础的最先进方法的局限性,以及未来研究的可能方向,以缓解当前的局限性并满足动画家的需求。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
27+阅读 · 2020年12月24日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Anomalous Instance Detection in Deep Learning: A Survey
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
56+阅读 · 2021年5月3日
Arxiv
27+阅读 · 2020年12月24日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Anomalous Instance Detection in Deep Learning: A Survey
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
53+阅读 · 2018年12月11日
Top
微信扫码咨询专知VIP会员