Understanding how the brain responds to sensory inputs is challenging: brain recordings are partial, noisy, and high dimensional; they vary across sessions and subjects and they capture highly nonlinear dynamics. These challenges have led the community to develop a variety of preprocessing and analytical (almost exclusively linear) methods, each designed to tackle one of these issues. Instead, we propose to address these challenges through a specific end-to-end deep learning architecture, trained to predict the brain responses of multiple subjects at once. We successfully test this approach on a large cohort of magnetoencephalography (MEG) recordings acquired during a one-hour reading task. Our Deep Recurrent Encoding (DRE) architecture reliably predicts MEG responses to words with a three-fold improvement over classic linear methods. To overcome the notorious issue of interpretability of deep learning, we describe a simple variable importance analysis. When applied to DRE, this method recovers the expected evoked responses to word length and word frequency. The quantitative improvement of the present deep learning approach paves the way to better understand the nonlinear dynamics of brain activity from large datasets.
翻译:理解大脑如何应对感官输入是具有挑战性的:大脑记录是局部的、吵闹的和高维的;它们在不同的会议和科目上各不相同,它们捕捉高度非线性动态。这些挑战导致社区开发了各种预处理和分析方法(几乎完全线性),每个方法都旨在解决其中的一个问题。相反,我们建议通过具体的端到端深学习结构来应对这些挑战,并经过培训,同时预测多个科目的大脑反应。我们成功地测试了在一小时的阅读任务中获得的大量磁共振成像(MEG)记录。我们的深重复编码(DRE)结构可靠地预测了MEG对经典线性方法的3倍改进。为了克服深层学习的可解释性这一臭名昭著的问题,我们描述了一个简单的可变的重要性分析。在应用DRE时,这一方法恢复了预期对字长和字频的反应。目前深度学习方法的量化改进为更好地理解大型数据集的大脑活动非线性动态铺平铺平了道路。