We propose Hypernetwork Kalman Filter (HKF) for tracking applications with multiple different dynamics. The HKF combines generalization power of Kalman filters with expressive power of neural networks. Instead of keeping a bank of Kalman filters and choosing one based on approximating the actual dynamics, HKF adapts itself to each dynamics based on the observed sequence. Through extensive experiments on CDL-B channel model, we show that the HKF can be used for tracking the channel over a wide range of Doppler values, matching Kalman filter performance with genie Doppler information. At high Doppler values, it achieves around 2dB gain over genie Kalman filter. The HKF generalizes well to unseen Doppler, SNR values and pilot patterns unlike LSTM, which suffers from severe performance degradation.
翻译:我们建议 Hypernetwork Kalman 过滤器(HKF) 用于跟踪多种动态的应用。 HKF 将 Kalman 过滤器的概括能力与神经网络的表达力结合起来。 HKF 不保留 Kalman 过滤器的库, 并选择一个基于实际动态的库, 而是根据观察到的顺序对每个动态进行自我调整。 通过对 DCDL- B 频道模型的广泛实验, 我们显示 HKF 可用于跟踪频道的多普勒值, 将 Kalman 过滤性能与 genie Doppler 信息匹配。 在高多普勒 值下, 它在 Genie Kalman 过滤器上取得了约2DB 的收益。 HKF 概括地说, 多普勒 、 SNR 值和 试点模式与 LSTM 不同, 后者有严重的性能退化。