A constructive numerical approximation of the two-dimensional unsteady stochastic Navier-Stokes equations of an incompressible fluid is proposed via a pseudo-compressibility technique involving a parameter $\epsilon$. Space and time are discretized through a finite element approximation and an Euler method. The convergence analysis of the suggested numerical scheme is investigated throughout this paper. It is based on a local monotonicity property permitting the convergence toward the unique strong solution of the Navier-Stokes equations to occur within the originally introduced probability space. Justified optimal conditions are imposed on the parameter $\epsilon$ to ensure convergence within the best rate.
翻译:通过使用一个参数 $\ epsilon$ 的伪压缩技术,提议对不可压缩液体的二维非固定式纳维-斯托克方程式进行建设性的数字近似。空间和时间通过一个有限元素近似法和一个 Euler 法分离。本文件通篇对建议的数字方法的趋同分析进行了调查。它基于一个本地的单调属性,使得在最初引入的概率空间内能够向Navier-Stokes方程式的独特强有力解决方案趋同。对参数 $\ epslon$ 的合理最佳条件是强制对参数 $\ epsilon 进行合理的最佳条件,以确保在最佳速率内趋同。