Recovering images corrupted by multiplicative noise is a well known challenging task. Motivated by the success of multiscale hierarchical decomposition methods (MHDM) in image processing, we adapt a variety of both classical and new multiplicative noise removing models to the MHDM form. On the basis of previous work, we further present a tight and a refined version of the corresponding multiplicative MHDM. We discuss existence and uniqueness of solutions for the proposed models, and additionally, provide convergence properties. Moreover, we present a discrepancy principle stopping criterion which prevents recovering excess noise in the multiscale reconstruction. Through comprehensive numerical experiments and comparisons, we qualitatively and quantitatively evaluate the validity of all proposed models for denoising and deblurring images degraded by multiplicative noise. By construction, these multiplicative multiscale hierarchical decomposition methods have the added benefit of recovering many scales of an image, which can provide features of interest beyond image denoising.
翻译:暂无翻译