Mediation analysis assesses the extent to which the exposure affects the outcome indirectly through a mediator and the extent to which it operates directly through other pathways. As the most popular method in empirical mediation analysis, the Baron-Kenny approach estimates the indirect and direct effects of the exposure on the outcome based on linear structural equation models. However, when the exposure and the mediator are not randomized, the estimates may be biased due to unmeasured confounding among the exposure, mediator, and outcome. Building on Cinelli and Hazlett (2020), we derive general omitted-variable bias formulas in linear regressions with vector responses and regressors. We then use the formulas to develop a sensitivity analysis method for the Baron-Kenny approach to mediation in the presence of unmeasured confounding. To ensure interpretability, we express the sensitivity parameters to correspond to the natural factorization of the joint distribution of the direct acyclic graph for mediation analysis. They measure the partial correlation between the unmeasured confounder and the exposure, mediator, outcome, respectively. With the sensitivity parameters, we propose a novel measure called the "robustness value for mediation" or simply the "robustness value", to assess the robustness of results based on the Baron-Kenny approach with respect to unmeasured confounding. Intuitively, the robustness value measures the minimum value of the maximum proportion of variability explained by the unmeasured confounding, for the exposure, mediator and outcome, to overturn the results of the point estimate or confidence interval for the direct and indirect effects. Importantly, we prove that all our sensitivity bounds are attainable and thus sharp.
翻译:暂无翻译