The kinetic Boltzmann equation models gas dynamics over a wide range of spatial and temporal scales. Simplified versions of the full Boltzmann collision operator, such as the classical Bhatnagar-Gross-Krook and the closely related Ellipsoidal-Statistical-BGK operators, can dramatically decrease the computational costs of numerical solving kinetic equations. Classical BGK yields incorrect transport coefficients (relative to the full Boltzmann collision operator) at low Knudsen numbers, whereas ES-BGK captures them correctly. In this work, we develop a finite volume method using a micro-macro decomposition of the distribution function, which requires a smaller velocity mesh relative to direct kinetic methods for low and intermediate Knudsen numbers. The macro portion of the model is a fluid model with a moment closure provided from the heat flux tensor calculated from the micro portion. The micro portion is obtained by applying to the original kinetic equation a projector into the orthogonal complement of the null space of the collision operator - this projector depends on the macro portion. In particular, we extend the technique of Bennoune, Lemou, and Mieussens [Uniformly stable schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys. (2008)] to two-space dimensions, the ES-BGK collision operator, and problems with reflecting wall boundary conditions. As it appears in both the micro and macro equations, the collision operator is handled via L-stable implicit time discretizations. At the same time, the remaining transport terms are computed via kinetic flux vector splitting (for macro) and upwind differencing (for micro). The resulting scheme is applied to various test cases in 1D and 2D. The 2D version of the code is parallelized via MPI, and we present weak and strong scaling studies with varying numbers of processors.


翻译:暂无翻译

0
下载
关闭预览

相关内容

MICRO:IEEE/ACM International Symposium on Microarchitecture Explanation:IEEE/ACM微体系结构国际研讨会。 Publisher:IEEE/ACM。 SIT:https://dblp.uni-trier.de/db/conf/micro/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 10月2日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员