Due to the lack of corresponding analysis on appropriate mapping operator between two grids, high-order two-grid difference algorithms are rarely studied. In this paper, we firstly discuss the boundedness of a local bi-cubic Lagrange interpolation operator. And then, taking the semilinear parabolic equation as an example, we first construct a variable-step high-order nonlinear difference algorithm using compact difference technique in space and the second-order backward differentiation formula (BDF2) with variable temporal stepsize in time. With the help of discrete orthogonal convolution (DOC) kernels and a cut-off numerical technique, the unique solvability and corresponding error estimates of the high-order nonlinear difference scheme are established under assumptions that the temporal stepsize ratio satisfies rk < 4.8645 and the maximum temporal stepsize satisfies tau = o(h^1/2 ). Then, an efficient two-grid high-order difference algorithm is developed by combining a small-scale variable-step high-order nonlinear difference algorithm on the coarse grid and a large-scale variable-step high-order linearized difference algorithm on the fine grid, in which the constructed piecewise bi-cubic Lagrange interpolation mapping operator is adopted to project the coarse-grid solution to the fine grid. Under the same temporal stepsize ratio restriction rk < 4.8645 and a weaker maximum temporal stepsize condition tau = o(H^1.2 ), optimal fourth-order in space and second-order in time error estimates of the two-grid difference scheme is established if the coarse-fine grid stepsizes satisfy H = O(h^4/7). Finally, several numerical experiments are carried out to demonstrate the effectiveness and efficiency of the proposed scheme.
翻译:暂无翻译