How will you repair a physical object with large missings? You may first recover its global yet coarse shape and stepwise increase its local details. We are motivated to imitate the above physical repair procedure to address the point cloud completion task. We propose a novel stepwise point cloud completion network (SPCNet) for various 3D models with large missings. SPCNet has a hierarchical bottom-to-up network architecture. It fulfills shape completion in an iterative manner, which 1) first infers the global feature of the coarse result; 2) then infers the local feature with the aid of global feature; and 3) finally infers the detailed result with the help of local feature and coarse result. Beyond the wisdom of simulating the physical repair, we newly design a cycle loss %based training strategy to enhance the generalization and robustness of SPCNet. Extensive experiments clearly show the superiority of our SPCNet over the state-of-the-art methods on 3D point clouds with large missings.
翻译:您将如何修复一个有大量缺失的物理物体? 您可能首先恢复其全球但粗糙的形状, 并逐步增加其本地细节 。 我们被激励模仿上述物理修复程序, 以解决点云完成任务 。 我们为三维模型提出一个新的跨点云完成网络( SPCNet ) 。 SPCNet 拥有一个从下到上等级的网络结构。 它以迭接方式完成形状的形状, 1) 首先推断粗糙结果的全球特征 ; 2) 然后用全球特征的帮助推断本地特征 ; 以及 3) 最后在本地特征和粗糙结果的帮助下推断出详细结果 。 除了模拟物理修复的智慧外, 我们新设计了一个基于循环 % 的培训策略, 以加强SPCNet 的概括性和稳健性 。 广泛的实验清楚地表明了我们的SPCNet 相对于3D 点云中大量缺失的状态技术方法的优越性 。