Policy targets evolve faster than the Couple Model Intercomparison Project cycles, complicating adaptation and mitigation planning that must often contend with outdated projections. Climate model output emulators address this gap by offering inexpensive surrogates that can rapidly explore alternative futures while staying close to Earth System Model (ESM) behavior. We focus on emulators designed to provide inputs to impact models. Using monthly ESM fields of near-surface temperature, precipitation, relative humidity, and wind speed, we show that deep generative models have the potential to model jointly the distribution of variables relevant for impacts. The specific model we propose uses score-based diffusion on a spherical mesh and runs on a single mid-range graphical processing unit. We introduce a thorough suite of diagnostics to compare emulator outputs with their parent ESMs, including their probability densities, cross-variable correlations, time of emergence, or tail behavior. We evaluate performance across three distinct ESMs in both pre-industrial and forced regimes. The results show that the emulator produces distributions that closely match the ESM outputs and captures key forced responses. They also reveal important failure cases, notably for variables with a strong regime shift in the seasonal cycle. Although not a perfect match to the ESM, the inaccuracies of the emulator are small relative to the scale of internal variability in ESM projections. We therefore argue that it shows potential to be useful in supporting impact assessment. We discuss priorities for future development toward daily resolution, finer spatial scales, and bias-aware training. Code is made available at https://github.com/shahineb/climemu.
翻译:暂无翻译