Temporally and spatially dependent uncertain parameters are regularly encountered in engineering applications. Commonly these uncertainties are accounted for using random fields and processes, which require knowledge about the appearing probability distributions functions that is not readily available. In these cases non-probabilistic approaches such as interval analysis and fuzzy set theory are helpful uncertainty measures. Partial differential equations involving fuzzy and interval fields are traditionally solved using the finite element method where the input fields are sampled using some basis function expansion methods. This approach however is problematic, as it is reliant on knowledge about the spatial correlation fields. In this work we utilize physics-informed neural networks (PINNs) to solve interval and fuzzy partial differential equations. The resulting network structures termed interval physics-informed neural networks (iPINNs) and fuzzy physics-informed neural networks (fPINNs) show promising results for obtaining bounded solutions of equations involving spatially and/or temporally uncertain parameter fields. In contrast to finite element approaches, no correlation length specification of the input fields as well as no Monte-Carlo simulations are necessary. In fact, information about the input interval fields is obtained directly as a byproduct of the presented solution scheme. Furthermore, all major advantages of PINNs are retained, i.e. meshfree nature of the scheme, and ease of inverse problem set-up.
翻译:在工程应用中,经常会遇到暂时和空间依赖的不确定参数。这些不确定因素通常都是在工程应用中遇到的。这些不确定因素通常是因为使用随机字段和过程,这就要求了解不易获得的概率分布功能。在这些情况下,诸如间距分析和模糊设置理论等非概率性方法是有用的不确定措施。涉及模糊和间距字段的部分差异方程式传统上使用有限元素方法来解决,输入字段使用某种基础功能扩展方法进行抽样。但这种方法是有问题的,因为它依赖于对空间相关领域的了解。在这项工作中,我们需要利用物理知情神经网络(PINN)解决间隔和模糊的局部偏差方程式。由此形成的网络结构称为间距物理学知情神经网络(IPNN)和模糊物理学知情神经网络(FPINN),显示了获得关于空间和/或时间不确定参数字段的受约束方程式解决方案的可喜结果。与有限要素方法不同,输入字段的关联性规格和蒙特-卡罗尔模拟是必需的。事实上,关于无物理信息-知情神经网络的间隔网络(impalal room)的模型是直接保存的。